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-!Q Let vy ( ) denote a random process whose bandwidth, loosely

speaking, goes to « as € > 0. Consider the family of differential
equations x€ = g(xe,ye) + f(xe,ye)/a(E), where a(g) - 0 as € - 0.
The question of interest is: does the sequence {xe(-)} converge in
some sense and if so which, if any, ordinary or Ito differential
equation does it satisfy? Normally, the limit is taken in the sense
of weak convergence. The problem is of great practical importance,
for such questions arise in many practical situations arising in many
fields. Often the limiting equation is nice and can be treated much
more easily than can the xe(-). In any case, in practice approxima-
tions to properties of the xe(-) are usually sought in terms of €
and some limit. To illustrate these points, as well as a related
stability problem, we give a practical example which arises in the
theory of adaptive arrays of antennas.
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1. Introduction

Let yE(-) denote a stationary random process whose "bandwidth"
goes to = as € > 0, and define the RY-valued process xe(-) by
the O0.D.E.

(1.1) x° = g(x%,y%) + £x5,y5)/a(e), x, = x(0) given,

where o(€) » 0 as € » 0, and Ef(x,ye) = 0 for each x. In this
paper, we address the question: as. € - 0, what is the limit of
{xe(-)}; in particular, does it satisfy an ordinary or Itd stochastic
differential equation, and if so, what is that equation. The question
arises frequently in applications in many areas. Often yc(-) is a
rather arbitrary process and yet the limit is a nice Markov process
satisfying, say, an Ito equation. Then many functionals of xe(-)
can be approximated by functionals of the limit and the parameter E,
for small €. 1In applications, this is often done, either explicitly
or implicitly. In Sections 2 and 6, one particular important applica-
tion will be discussed.

The problem has been around for some time and is a crucial
aspect of the problem of modelling the processes which arise in
practice by mathematically tractable processes. Perhaps, the first
mathematical treatment was given by Wong and Zakai [1}, [2] who dealt
with equations of the form

(1.2) %€ = g(x®) + £(x5)y",

where ye(-) was (more or less) the derivative of a polygonal
approximation YE(-) to a Wiener process, and 'YE(-) converged to
that process as € went to zero. Much subsequent was done on the
following form. Let o(€) = €, suppose that y(*) is a stationary
bounded process and p(+) a measurable function which satisfy the
strong mixing condition (1.3).

(1.3a) fopl/z(s)ds < -

(1.3b) |P{B|A} - P{B}| < p(T)

for each t,T and each B e B(y,, s 2 T + t) and A eg(ys, s < t).
Let ye(t) = y(t/ez). Motivation for this scaling is given in the
next subsection. (We write the values of a process' y(+) as either
y(t) or Yeo depending on notational convenience.)

Under (1.3) and other conditions on g and f, (1.1) was dealt
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with by Khazminskii (3], Papanicolaou (5], Papanicolaou and Kohler
[4], Papanicolaou and Blankenship (6] and Kushner (7]. The last
reference obtained perhaps the most general results (for the time
invariant case) and allowed cases where ye(-) could contain
(approximations to) impulsive jumps, and also where y(-:) 1is un-
bounded but the form f(x,y) = f(x)y was used.
i
Let C0

which go to zero as |x| » =, together with their first i
i

denote the space of real-valued functions on RT

th mixed
partial derivatives, and let i denote the subset with compact
support. Let subscript x denote gradient, and define the operator

A on C2 by

(10) ARG = BE' GOy k() + [ B 00y ) (£ 0y )y (X080
2
= ak ( 1 9 k(x)
= E bi(x)—ax:) i iZjalJ(x) a"x'i‘é_(;ccj

In references [3]-(7], it was proved (under various conditions on
f,g,y(:)) that xe(') converged weakly to a diffusion process x(-)
whose generator on EZ functions is the operator A of (1.4).

References [4] and [6] contain a wealth of ideas on the
approximation and related problems. The methods used in [7] are
based on general semigroup approximation methods of Kurtz ([8]. They
have a number of advantages over previous methods, being somewhat
easier to use and giving better results in many cases. The method
will be described and used in Section 3.

Most past work has dealt with showing that x(:) is a good
approximation to xe(-) in some sense. Only recently (see, e.g.
{13}) has the question of dealing with the control and stability
properties of xe(-) in terms of those of x(:) been considered.
Reference [14] deals with the reversed problem: finding xe(-)
which are easier to work with than x(-).

Discussion of properties of ye(-) as € >0, As €+ 0 in
(1.1) the process f(xe,ye)/a(e) is "increasingly compressed", hence
(loosely speaking) the bandwidth goes to «., If f(x,y) were not
divided by o(e), then the average energy in the process f(x:,yi)/“(s)
(over any finite interval) would tend to zero as € + 0 and the f
term would play no role in the limit. To see the rough idea most
simply, let ye(-) be scalar valued, let f(x,y) = f(x)y, let R(:)
and S(+) denote the correlation function and spectral density of a
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stationary process y(+), consider the special case where

y§-= y(t/ez) and let RE(-) and SL(-) denote the correlation
function and spectral density of ye(-). Then Re(t) = R(t/ez)/az(e)
and

s€(w) = Jw eVERE(t)dt = J eMtr(t/e?ydt/al(e) = e?s(etuy/al(e).
Unless @(€) = €, the energy per unit bandwith either blows up
(e/a(€e) » ») or goes to zero (€/a(€) - 0). When a(e) = €,
R€(0) = R(0)/e® » ». If the "magnitude" of y°(t)/e did not go to =
as € » o  then the energy per unit bandwidth would go to zero. So,
in order to get a constant energy per unit bandwidth as € + 0, we
need both a time compression (t/€” scale) and an amplitude magnitica-

tion (a(€) = €). Use of this remark will be made in the next section.

In Section 5, we illustrate the technique of [7] on an important
class of problems not explicitly treated previously. For each €,
let {SE, i > 0}, denote a stationary process. Define se(-) as the
fgnction which is equal to sf on the interval [i,i+l), set

Et = sc(t/E), and let sg be "small'"; i.e., Ef(x,si) =0,

var f(x,sf) v~ ¢ and define x°(+) by
(1.5) R° = gn" 8} £ £6& & Me, x(@) = xg

The exact forms of the conditions to be used are stated in Section 5.
The form (1.5) is chosen partly to illustrate the method. That €€(-)
is piecewise constant makes the calculations a little easier, but is
not a particularly crucial assumption. We will treat the case where
f(+,+) is linear in its second argument: f(x,s) = f(x)s.

Equation (1.5) is also important from the point of view of
applications. Consider the scalar valued discrete parameter sequence

€

xn+1

3, € [ € € = & =
= Xn + h(Xn,sn) where Bh(x,si) = ep(x) and var h(x,si)

oz(x)E. Then, setting q(x,si) = h(x,si) - Eh(x,si) yields the
discrete parameter version of (1.5):

(1.6) XFyqp = Xo + ep(X7) + a(Xp,sp).

Let fe(-) denote a piecewise linear interpolation of {X:} which
is linear in each [€n,€én+€) and equals X: at ¢€n. Then the slape
of fe(-) is D(X:) + q(xs,se(sn/t))/e in [en,en+€). Thus, (1.5)
is a continuous parameter version of {X:}. The limits of fe(-)

and of {xe(-)} are not necessarily the same, although in many cases
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we can find g and g such that xE(nE) = X; for all €.n.

_ Let us suppose that in (1.1), o(€) = € and ye(t) = y(t/EZ).
Equation (1.5) differs from equation (1.1) in that the €E(t) i
essentially become small in some sense as € » 0. But the scaling
is also different (less compression), t/€ being used in lieu of
t/cz. Equation (1.5) (and (1.6)) correspond to a problem where, as
€ » 0, more and more random effects affect the system, but where the

individual effects became smaller and smaller. Let f(x,s) = f(x)s
and write Ee(t)/E = [sS(t/e)//E)/VE , bringing the form (1.5) into
that of (1.1) but with V€ replacing € and s (t/€)//E replacing
yc(t). But now, as € =+ 0, se(t/C)//E might become unbounded. Owing
to this, the methods used for (1.1) (at least when y(-) was assumed
bounded) need to be modified a little for use here.

In Section 2, we discuss a currently important problem concern-
ing "adaptive'" antenna arrays, which illustrates one particular value
derived from the type of limit results with which we are concerned.
Sections 3 and 4 describe Kurtz's [8] interesting method for proving
tightness and weak convergence of a sequence of not necessarily
Markov processes. Henceforth, x© is used only for the solution to

(1.5). Convergence of the finite dimensional distributions of xe(-)
to those of a particular diffusion x(-) 1is proved in Section 5.
Also, Section 5 proves tightness of {xe(-)}. Together these results
yield that xe(-) converges weakly to x(+). In Section 6, we
return to the antenna problem, and treat the problem of weak con-
vergence and get a moment estimate for the adapting parameters, and
discuss a related stability problem.

The use of weak convergence methods seems quite natural for our
problem. Often w.p.l results are meaningless, since usually only one
system (a fixed €) is to be studied, and we seek approximations to its
properties in terms of € and properties of the limit.

2. A Problem in Adaptive Antenna Arrays

Let n(-) = (ni(-),...,nr(')) denote a “"wide band" complex
valued stochastic process. We are given an array of r antennas with
received signal plus noise v(t) = s(t) + n(t) = {si(t) + ni(t)},
si(t) and ni(t) being complex valued. The v(t) is multiplied by
a complex valued weight w, and the object is to find the weights
which maximize the ratio of signal to noise power in the output
w'v(t). The problem is important and of great current interest (see
the papers in [9]) or [10] and references contained therein). The
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signal frequency is known, the signals received by the antennas
differ only in the phase. Let * denote complex conjugate. Let
S; = (1,exp i¢2,...,exp i¢r)’ where ¢j is the phase of sj(t)
relative to that of sl(t), and let S be proPorzional to SO' With
M = En*(t)n'(t), the optimum weight is w = kM 'S , for any constant
k > 0.

In many applications, M is time varying, due to deliberate
jamming attempts, or due to more natural phenomena. In fact, in
many applications n(-) is a strong competing signal which we wish
to '"tune out" and its covariance may vary, depending on the particular
use to which the system is put. We suppose (as is often the case -
e.g., in pulsed radar) that the signal power is much less than the
noise power, so that M = Ev*(t)v'(t).

A very useful and relatively simple mechanism for adapting the
weights (see, e.g. [10]) can be constructed. The relevant equation is

M, = v (t)v' (1))

£2.1) Tw + (GM+I)w = GOS’

where 1T is a scalar system time constant and G and G0 are
system gains. Since M is the "square'" of a wide band process, if the
bandwidth (BW) goes to infinity and the energy per unit BW does not
go to zero, (2.1) becomes meaningless. In practice, we are interested
in both Ew, and in an equation for an approximation to W - Ewt
for wide BW noise.

A commonly used "engineering'" heuristic argument says that since
M(*) 1is wide band and w(*) is much smoother than M(-), the two
are essentially independent and EM(t)w(t) = EM(t)Ew(t) and that Ewt

approximately equals w_, the solution to

t’

(2.2) W+ (CM+D)W = GoS”.

Of course (2.2) does not give the correct value of Ewt, even as an
approximation, unless the energy per unit BW of the noise is very
small. To see this, simply consider the scalar case where

Tw + (an
widely used, we must find an interpretation with respect to which it
makes sense. If (2.2) is an asymptotic result, then it must be satis-

+1)w = Go; solve it and take expectations. Since (2.2) is

fied by a limit of solutions to (2.1) (or their expectations), as some parameter
tends to say, . The comments below are illustrative of the usefulness of the limit
results to which this paper (and references [3]-([7]) are devoted.
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Let 02 denote the sum of the cigenvalues of M. In practice,
often a rough estimate of a quantity proportional to 02 (the noise
power) is made, and an automatic gain control mechanism is used to
adjust G, usually decreasing G as the estimate of o2 increases.
Such a mechanism is crucial to the proper scaling of (2.1), and we
assume its use. In fact, suppose that for some number K, G = K/oz.
Then (approximately, actually, since we ignore the "signal'" component
of M) with 8M =M - M,

(2.3) i + [KW/0? + K(8M)/0? + Ilw = GyS*.

As the BW of n(:) tends to =, the effects of K(éM)w/o2 become
negligable (a consequence of the type of argument in (7], Sections 6
and 7, under reasonable assumptions on n(+<)) and the limit is pre-
cisely the solution of (2.2). For concreteness, we consider the case

arising from (1.1) where Mty = y(t/EZ)/E and y(:) is a stationary

bounded process and € = 1/0. Set ﬁo = Ey:yé,&q: = [y*(t/ez)y'(t/ez) - ﬁo].

Write 6Mt as GM: = dﬁi/ez and use 6Mt for GM%.
Now, define 6wt . U Wt and u® = oéw. Then
w® + (Kh/o? + 11u® + K(eME/0P)u® + K(8ME/0)W = o0,
(2.4) = R i PR e
e N L/ S PRI € TR Y B[

As BW » =  the effects of K(GM%bz)u disappear and K(GMe/o)W
becomes '"white noise'", in the sense that there is a standard Wiener
process B(-) such that the limit process has the law of wu(*) in

(2.5) Tdu + (KM + Iludt + QdB = 0, wu(0) = 0.

Q is obtainable by the method of Theorem 5. We return to this problem

in Section 6, and deal with the convergence problem and a related
stability problem when all quantities are not complex valued, to
simplify the notation.

3. Convergence of Finite Dimensional Distributions

In reference [8], Kurtz gave some fairly general methods for
showing convergence to a Markov process of a sequence of non-Markov
processes, either in the sense of weak convergence or in the sense of
convergence of finite dimensional distributions. In this section
and in the next, we briefly describe his method. ‘Later we apply it,
together with an idea in [5], (6], to get limit results in a fairly
efficient manner.

Sections 3 and 4 are identical to Sections 2 and 3 of [7].
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Let (Q,P, #) denote a probability space, { 92} a nondecreasing
sequence of sub o-algebras of %, lect ¥ denote the space of pro-
gessively measurable real valued processes k() on [(0,»), adapted
to {%.} and such that sup E|k(t)]| < ». Let k® and k be in

% . Define the limit "p- 11m" by p-lim k© = k iff sup qup EIk(t)] < =

£>0
and Elk (t) - k(t)| + 0 for each t as € + 0. For cach s > 8,

define the operator 9(s): ¥+ % by 9(s)k = function in % whose
value at t 1is the random variable 1357 k(t+s). There is a version

which is progressively measurable ([8], Appendix) and we always assume

that this is the one which is used. The 9(s), s > 0, are a semi-

group of linear operators on 2. IlLet éf dcnote the subspace

of p-right continuous functions. If the 11m1t p- 113 [— (7(s)k-k)]
s+

~

and exists and is in &%, we call it Ak and say that k € E?(ﬁ).
The operators %(s) and A are analogous to the semigroup and weak
infinitesimal operator of a Markov process. Among the properties to

be used later is ([8), equation (1.9))
S

(3.1a) F(s)k - k = J F(V)AkdT, k € 2(A),
0

or, equivalently,
2 s
(3.1b) E k(t+s) - k(t) = [ E Ak(t+T)dr for each t > 0,
Tt 0o Tt :

t S

If, for some process Z€(°), &, = gB(Ze, s < t), we may write
_9§,T: and A% for %, J(t) and A, resp. :

The following Theorem (a specialization of (8], Theorem 3.11)
is our main tool for dealing with (1.1) or (1.5). '

Theorem 1. Let Ze(r) = xe(-), EE(-), € > 0, denote a sequence of
]
ey valued right continuous processes, x(*) a (Rr~va1ued) Markov

R
process with semigroup T, mapping C, into C0 and which is
strongly continuous (sup norm) on CO‘ For some )\ > 0 and dense set
D in C,, let Range (A-AID) be dense in C, (sup norm,

A = infinitesimal operator of x(-)). Suppose that, for each k € D,
there is a sequence {ke} of progressively measurable functions

adapted to {j?:} and such that

(3.2) p-1im{k® - k(x®(+))) = 0

e BNSPRATINERE ey

g dion s




3 ——
i ———

’ ISR BT P SRR e < e

(3.3) p-1im{Ak® - Ak(xZ(-))) = o.

Then, if xE(O) + x(0) weakly, the finite dimensiona} distributions

of xe(-) converge to those of x(-).

Equations (3.2) and (3.3) are equivalent to (the limits are
taken for each t as € =+ 0)

(3.2')  sup E|k®(t) - k(x“(t))] < =, E|kT(t) - k(x(t))| » 0
E’t

(3.3')  sup E|ASKE(t) - Ak(xS(t))]| < =, BIATKE(t) - Ak(xP(t))| - o©.
e, t

4. Tightness

Let Ee(-),xe(-) denote the functions in the model (1.5). Let

€ N €
denote Q(Eu, u < t) and write Ee for Ej;e‘
t

Again, we describe results from [8). Let DY[0,») denote the

€
gt

space of RY valued functions on {0,») which are right continuous
on [0,») and have left hand limits on (0,). Note that xe(') €
Dr[O,w) w.p.l. Suppose that the finite dimensional distributions of
xe(-) converge to those of a process x(-), where x(:) has paths in
Drlo,w) w.p.l. Then, as noted in (8], bottom of page 628, {xe(~)}

is tight in D' [0,») if {k(x%(-))} is tight in D([0,») for each

k € €. (€ 1is used there, but it can be replaced by 63 or by any
set of functions dense in C in the sup norm.) It follows from (8],
Theorem 4.20, that (k(x®(:))} 1is tight in D[0,w) if xg + X,
weakly and if, for each real T > 0, there is a random variable ye(s)
such that

€ € . € €
(4.1) EgY(8) > Ef min{l,(k(x, ) - k(x1%),
for all 0< t < T, 0 cuc<d<1, and
(4.2) lim Tim E v_(8) = 0.
§+0 €+0

In (8}, p. 629, Kurtz suggests a method of getting the 75(6).
This method is developed in Theorem 2 and is used in the sequel. The
k° below will be obtained in the same manner as we will obtain the
k® needed in Theorem 1. We have (||k|| = sgplk(x)l)

Ii i

PR e g S




E €

(4.3) B, lkCx,,.

[ ) € (3 ¢ €
) - k(x0T < 20K B () - k(x|

€

<€ 2
+ II:tk (xt+u

T P
em_ : 3, and let there be a sequence {k°} in &,
where (ke)1 € 52(&6), i = 1,2, and such that, for each real T > 0

: ; €
there is a random variable M such that

Theorem 2. Let k € C

(4.4) suplke(t) - k(xe)l + 0 in probability as € » 0,
t
t<T
(4.5) sup|AS(k“(t)) '] < M_, i = 1,2, 1im sup P{M_ > N} = O.
t<T N ¢

Then {(k(x“(-))} is tight in D[0,=).
Proof: We need only show tightness of {ke(-)} on - [0,T}. By (3.1)
. : u ~ 3
ErCE et - et = [ ERE(kE (o) far,
0

from which (4.3) and (4.5) yield that there is a Ye(d) satisfying
(4.1) and (4.2) for {ke(-)}. Then (4.4) and tightness of {ke(-)}
imply tightness of {k(xe('))}. Q.E.D.

5. Convergence of the Sequence {xs(-)} of (1.5)

We follow the general line of development in [7], using the
ideas in Sections 3 and 4.

Assumptions:

(A1) Let f(x,s) = f(x)s. The functions g(:,*) and f£(*)

are continuous, the first (second, resp.) function having

continuous first (second, resp.) mixed partial x-

derivatives.

(A2) There is a constant K such that

[£(x)] + |g(x,s)| < K(1+|x]|).

(A3) [si} is bounded (uniformly in €) and.stationa;y and
€ _
ESi = 00

Define F{ = B(s5, j < i), Fy = B(E, s < t) and let Ef

and E: denote the corresponding conditional expectation operators.

P W S g §
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Throughout the sequel, K denotes a constant, whose value may change
from usage to usage. Also in (Adb,c), we let s? denote an arbitrary
scalar component of itself. It seems to be most convenient to use
(A4) in its given form. Other forms, more closely resembling strong
mixing can be given. Strong mixing would imply the second part of
(Ada) and (A4b,d). But something like (Ad4c) would still be required,
because we need the € dependence there.

(A4) a. There are uj and 6 > 0 such that X u}/z < o and
J

Elsil2 < Ke, |H§s§+j| < Kuj.
b. |E§S§+jsi+j+k - Esi+j5§+j+k' < Kuj
ok EI/Z'EES§+jS§+j+k ¥ ES§+jS§+j+kl2 5 K”j€1/2+6
d. § |Efg(x,s5,5) - Eglx,sy, )| < =,
L lﬁggx(X,S;+j) - ng(x,s§+j)\ < o,

J

Let the expectation of the sums in (d) go to zero as € » 0,

uniformly on bounded x-sets.

Define the operators Ai and A° by (k(*) € 62)

(5.1) AfKGO = B [ £ 008D GO0, ) du/ e
- B [ £100,55(8/) Ik (R £(x, 55 (uet/€))] du/ €
0
and
€ g AL Roe
Ak(x) = lim N I At+sk(x)ds.

0

N+

Let i = [t/€], which equals the nearest integer to t/€ which is not
larger than t/€., Then

)
} (5.2) Ak(x) = 1 jglﬁf'(x,sg)[k)'((x)f(x,s;)]x
i ¢ £ BE'(x,50) (kL (X)E(x,55) ), (elt/€] + € - t)/e.

A

Aabunien
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Note that KC is A: but with (e[{t/e] + € - t)/€ replaced by 1/2. l

(A5) The sum in (5.2) converges uniformly in € for each x ,

and k(-). lence also uniformly in x, since
f(x,s) = f(x)s). There are matrix and vector valued
functions a(-) and b(-), resp., such that

(E°(x) = Eg(x,s))

(5.3) Ak (x) + ki(x)EE(x) > b (x)k, (x)

' 4 izjaij(x)azk(x)/axiaxj = Ak(x) ‘

uniformly in x for each k.

(A6) A is the restriction to 62 of the strong infinitesimal

e

operator of a strong Markov diffusion process (with no

finite escape time) with semigroup Tt’ which maps C0
into C0 and is strongly continuous on C

0 . |
(A7) For some real A > 0, the set (A~A)€2 is dense in C

0°

We note that it is enough to use 63 in (AS5) and (A6).

Remark on bounding the coefficients. In our case (since
f(x,s) = f(x)s) there is a matrix o(-) such that a(:) = o(:-)o'(.).
Suppose that b,o, are locally Lipschitz and that x(-), the diffusion
with coefficients o(:),b(:), has no finite escape time w.p.1l. Then

x(+) has a representation as a solution to an Ito equation, and can

be defined on Wiener process space. We say that xN(-) is an
N-truncation of x(°*) if its drift and diffusion coefficients
bN(-],oN(-) are bounded and equal b(-),0(:) in Sy = {x: }x) <= W),
and are obtained by a bounding of g and f. The process xN(') can
be defined on the same Wiener process space on which x(*) 1is defined,
and then equals x(+) wup until the first exit time from SN (which

+ o w,p.1 as N »+ »), If for each N, Theorem 2 (and, of course,

(A6) - (A7)) is true for some N-truncation, then it is true as stated.

Remark on the conditions. (A6) and (A7) are required for the

use of (the semigroup approximation) Theorem 1. (A7) is equivalent
to the strong infinitesimal operator of the T, of (A6) being the
closure of the operator A of (5.3) acting on éz (or on any set

sense in G2 in the norm ||k||2 = sup(|k(x)| + |kx(x)| + Ikxx(x)l)).
X

i 5 7 A
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This condition does not seem to be very restrictive. As noted above
it is often only necessary to verify it for some xN(-) truncation
for each N. [If the coefficients are bounded and uniformly twice

continuously differentiable, then ((11], Chapter 8.4) T, maps Cg

into Cﬁ and is strongly continuous on C0 with respect to norm
||k||2. We can then replace Co by CS in (A5), (A6) and in
Theorem 1 and consider Tt as acting on CS rather than on CO.

In Theorem 3, we apply Theorem 1 to get convergence of finite
dimensional distributions of {xe(-)} to those of x(-) on an
arbitrary time interval 0,T. Tightness (Theorem 4) is a little
harder to get, owing to the fact that f(x,EE)//E is not necessarily
uniformly bounded as € > 0 (see remarks in Section 1), and some
additional conditions must be used.

Theorem 3. Under (Al) to (A7), the finite dimensional distributions

of xe(-) converge to those of x(:) as € + 0, where x(-) is the

diffusion with infinitesimal operator A (on 62 functions) and

initial condition Xg

Remark. Give k € 63

a suitable k° and proving (3.2)-(3.3). Following a basic idea in

[5]1, [6], we will define functions k; and k; such that k= = k +

k; + k; does the job. The k; are constructed to guarantee that

p-1lim k% =0 and A®k® = Ak plus terms going to zero in the sense

, the main work in using Theorem 1 is in finding

of p-lim.

3

Proof: Part 1. Let k € C°. Then it is easy to check that kg(‘) =
k(x*(.)) € DA®) and that (write x = x;, & = &)

ATkg(t) = ki (x)[g(x,6) + £(x,E)/¢€l.

Part 2. We now define kf(t) = k;(xt,t) in such a way that
Aekf(t) cancels the k}(x)f(x,§)/¢ term of Aekg(t). Define

(5.4) KO0 = [ B 00 (Futg, )/ e)ds.
By (A3), (M), (i = [t/e])

€ e e €
(5.5) |ky(x,t) | < j§o|sikx(x)f(x,si+j)| < K } My




(
3

Thus, kf

(5.5) is bounded above by K€

is bounded. By (Ada), Elﬁiki(x)f(x,sz
1/4 3 u1./2

+j)! < K /€. Thus

and, hence, p-1lim k; = 0.

)
Note that k;(x,t) is differentiable with respect to x. In
fact,

€ e €
(5.6) K00 t) = [ BTG Eteg, )76, ds
which is well defined for each €. We can readily show that

szp EIEEkl(x:+6,EE+6) - k;(xz,EE)l/d is bounded as &6 + 0 and that

(5.7) p-1im[ECk] (Xg, 5, t+8) - K (xg,t)1/8

t+¢?

p-1imlE k] (Xp, 4, t+8) - k(xy,t+8)1/8
= E; E € € €
+ p-11m(Etk1(xt,t+6) - kl(xt,t)]/é

= (ky (X 1)) - k(X E(xg,E()/8

x(xs,t) * k(x:,t)/e

where X; = g(xg,Ef) + £(xg,65)/€. Thus k; € D(A®) and A%k is
given by (5.7). The second term on the r h.s. of (5.7) cancels a
term of Rekg. Also the term in Al x(x t)'i: which arises from the

g term goes to zero in the p-lim sense as €% 0,

Part 3. Now kg is to be def1ned such that ASKS (t) equals
ﬂk(xi) minus the dominant term in (xt,t) xt plus terms which go
to zero in the p-1im sense as € =+ 0. Set k (t) = k;(x:,t) where

£1(x,EC, ) ot )
(5.8) ky(x,t) = f:ds{]:E _-x—e-t—*é—[lg((x) __.g’_S_“_]du : A:’sk(x;}

jﬁﬁcnmusvg-Eﬁnws-ﬁuﬁ)*QunL

The last term of k2 goes to zero uniformly in x, as € =+ 0;
also (with x = xi) it is in D(A®) and A k (x,t) = k'(x)g (x)
plus terms going to zero in the p lim sense minus k! (x)g(x,&t) This
last term cancels a term of A ko(t) We need to deal only with the
first term of (5.8). Recall that A k(x) is just the expected

tes
value of the intepral with respect to u of the coefficient of B




|

A . : 3 : €
Owing to the integration with respect to s in (5.8) A can

(and will) be replaced by A with little required chan;ésin the sub-
sequent arguments Next, we show that ﬁ; is well-defined and
p-lim k2 = 0. To simplify the notation, assumec the scalar case and let
g represent cither f(x,s?) or fx(x,s§). All bounds and con-
vergences are uniform on bounded x-sets.

We have, (i = [t/€])

9
lk(t)I<K ZI

i 1+J i+j+k TTivjUi+jrkte

By (Ada,b) the i,jt “

by Kuk, hence by K(u. uk)

term is bounded above by Ku., and also

L which implies that the sum is bounded.

Also, by (A4a c), p-lim k2 = 0. It can also be readily shown that

k; € 9(1\ ) We need only show that ﬂekg = minus argument of the outer

1ntcgra1 of ﬁ; (at s = 0) plus i; x(x%,t)'iz and that
¥ ’

p-lim k (xt,t) x = (0. If this is true, then we have Ae(k(xi) +

k](t) * kz(t)) = Ak(xi) plus terms whose p-lim is zero, and the proof

will be completed. That Ak has the asserted form is not hard to

2
show, and we only show that p-lim (X ) k = 0.
To get k; x* We can differentiate under the 1ntegral in (5.8).
’

With the use of the above f? notation, k2 x(t) xt is bounded by a
’
finite (the number not depending on €) sum of terms of the type

(i = [t/€])

| € WS i S o~
bl G *aEgs iZjILifi+j i+j+k isjfiejenl
’
1/2,,.€,2 1/2 1/2 €
Byl(A4), gl/ 1510 ¢ ke £2  ong B |E +Jf1+,w| < KEE; |f1+3|“k <
Ke Mo This and (A4c) implies that
1/ZIE £y o f < BE; . £: |2 < ke(l* 6)/z(u u )1/2

e 5 B S R

Thus, by (A4) again, E|Q| < Keé/z; hence, p-lim (ie)'ig x = 0. Q.E.D.
’

ii+j i+j+k

Tightness. To prove tightness (which together with the con-
vergence of finite dimensional distributions yields. weak convergence
of {xe(-)} to x(+), we make use of Theorem 2. Both (4.4) and (4.5)
must be shown for each k € 63. They do not follow from (Al)-(A7).

In order to simplify matters we use (A8) also.




€ € : ] :
(A8) et 5. P Lewi’ where L is a matrix (bounded uniformly

in €) and {w?, i >0} is » Markov chain for each €.

There are matrices p; such that |p;| < » and where

the convergence is uniform in €, and E. w§+J = p§w§.

We use EF to denote cond1t10n1ng on (ws, §< i),  Let
€,7 772 £ € € !

BT 5 KT7E and TR ) B ()

py(lwg]” + Ke)

Remark. Condition (A8) is quite realistic. For example, let w§+1 =

Bwn + B , where the eigenvalues of B are inside the unit circle and
for cach €, {B } is a sequence of truncated independent identically

distributed Gau551an random variables with covariance bounded above

by Ke. Then (we use scalar case for illustration) E; (w1+3)2 =
. -1
3 2k B8 W Z n B 2 %50 Cal
B (wi) kio(var B )B and |ni(wi+j) E(wi+j) f|B|J( 1)
! (var BE)IBIZk where var B° < Ke.
k=j = n -

Theorem 4. Under (A1) to (A8), {x°(:)} is tight on D'[0,») and

converges weakly to the diffusion x(:) of Theorem 3 as € + 0.

Proof. Tightness of {k(xe('))} on D[0,T] needs to be shown, for
arbitrary T and k € 63. Define kS as in Theorem 3. Since k;,
i =0,1,2, are bounded, and k% ¢ D(AS), then (k%)% ¢ D(A®) and
Ae(ke)2 = ZkEAeke By Theorem 2 and the estimates of Theorem 3 we

only need to show that for each 6 > 0 (i = 1,2) P{sup|k§(t)|36}2
t<T

as € » 0 and that ( ) x® is bounded on [0,T) by some random

variable M.(T) such that sup P{Me(T) > A} +°0 as A+ =, (All the

other components of Afk® hase this property by the estimates in

Theorem 3.)
By (A8) (using scalar case notation where convenient)

(5.10)  sup|kj(t)| < K  sup RS T lw;I
J i<t1/e)

t<T i<[T/e} j=0 * i
(5.11) 50p|kz(t)| <K sup ) |E i+j i+ +k Esi*js:*j*kl
t<T i<(T/€] j,k=0 :
< K sup walz + Ke,

i<(T/€)
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Similarly

€
Is/| o eE € £ g
5.12 N e O S E.s. e e
¢ ) ,S::l¥‘k s X ()th = & j,E=OI i7i+j° I*J"k 1+) 1+J*k|
HE
< K  sup 'é + K |wE|.
i<[T/€] 0" i

By the comments in the first paragraph and the bounds (5.10)-(5.12),
we need only show that

(5.13) P® = P{ sup. |w§| > Acl/3} + 0

i<[T/€]

as € » 0 for each positive A. Bounding (5.13) and using Chebychev's

inequality yields

7
(T/€) Elwt| 1/6
I)€ < izo {|w | > Ae_1/3} < (% +2) XT:;TK < KLA.7_ :

from which we get that (5.10), (5.11) go to zero as desired and that
(5.12) is bounded as desired. In fact (5.12) goes to zero in
probability as € » 0. Q.E.D.

6. Convergence and Stability for the Adaptive Antenna Problem

We use the same notation as in Section 2. The symbols E: and
F.t refer to expectation conditioned on y(s), s < t/e2 and y(s),
s < t, resp. Write (KM0+I)/T As in Section 2, y(+) 1is a (not
necessarily piecewise constant) stationary right continuous and bounded
process. The quantities are not complex valued here, to simplify the
notation. In general, deal with the real and imaginary parts

separately. Assume

(B1) J |Et6ﬂt+ |ds is bounded uniformly in t,w.
0 s

Define the operator Ag (on 62 functions) by (Wt is not random)
0 ke ("_ 3w
= ' M !
Ak = & Iowtﬁéﬂokuu(u) M W, ds .
(B2) [ods IOIEtGMt+56Mé+s+v - EGMt+ 6Mé+s+vidv

is bounded uniformly in t,w,

i ik WU s Wy VU




(B3) Either let E be the cxpectation conditioned on
N #(y(s),s <t + p) (and similarly for Ei) or else
p>0
Epep¥ess * Bpleas 804 Bppo¥py Year * Be¥pegYper (2nd

also for Srd order terms) in probability as p + 0, for each
positive t,s,T.

Both (B1) and (B2) follow from the strong mixing condition (1.3).

2 0
Definc the operator At by Atk(u) = -kd(u)Kou + Atk(u) = -k&(u)Kou +

1 2
L3 2.pij(t)a k(u)/auiauj. Set (p

i,]

IJ} = P = QQ'

Theorem 5. Under (B1)-(B3), {u®(+))} converges weakly in D' [0,»)

to the diffusion (2.5) with generator /\t and initial condition
u(0) = 0.

The proof follows the lines of that of Theorem 3 quite closely,
except, of course, that the integrals cannot necessarily be written
as sums. Also, due to the scaling and to the fact that y(*) is
bounded, tightness is more easily proved than .in Section 5. In
particular, ki + 0 as €+ 0 (i = 1,2) and so does (k;,u)'ﬁe, all
uniformly on [0,2). Theorem 5 is also a consequence of the results
in [4) (under their mixing condition (3.1) on y(+), which implies
(B1)-(B2)), (6] (for Markovian y(-)) or (7). We will give only the
relevant k;. p

Let k € C°. Then k;(t) = k;(u:,t), where we use

~

© M
€ -K € ~ € t+s —
kl (U, t) - X [oEtk‘;(U) [éMt‘_Su + i Wt]ds

~

2 o o (6M 3" &M
-k P - t+s+v t+s —, . a0
kz(u,t) :2. Iods{IOWtEt i e kuu(u) —_— wtdv Atk(u)}'

We have ASkE = Atk plus terms which to to zero (uniformly in w,t)
as € -+ 0,

An extension of Theorem 5. Theorem 5 is not very satisfactory,

since we are usually interested in uc(-) for large times, and would
like some estimates of how close the tails ([T,») sections, for

large T) are to the tail of (2.5). The weak convergence result of
Theorem 5 does not give this to us. In Theorem 6, we show that




T

(6.1) sup Elue(tllz is bounded
t>0,€ small {

(6.2) (uS(T+.), T > 0, € small} is tight in DT[0,=).

From these, we get the more satisfactory conclusion of Theorem 6. As
noted after the proof, the method is not sharp enough to get good
estimates for how small € must be in order for (6.1)-(6.2) to hold.

Theorem_6. Assume (B1)-(B3). Then (6.1) and (6.2) hold and as € + 0,

T »e in any way at all, Ue(T+-) converges weakly to the stationary

solution to (2.5). Also, if uC(T+-) converges wecakly to a process

uE(-) as T + =, then ue(-) converges weakly to the stationary

solution of (2.5). (Indeed, it can be casily shown from (6.1) and the
stationarity of y(:) that {ue(T+-), T > 0} "is tight for each {

small €.)

Proof: Only a sketch will be given. The stability idea is essentially \

that in [6], except that it is used in a slightly different way and

that Kurtz's results must be used since y(:) is not assumed to be J ‘
Markovian. Let P be a positive definite symmetric matrix such that

u'Pu = k(u) 1is a Liapunov function for u = -Kyu, and C = -(K6P+PKO)

is negative definite. In the proofs of Theorems 3, 4, 5, it was re-

quired that k() € 63. Our k(-) here is not in 63, but it makes

little difference in the proofs. This is because y(:) 1is bounded and

T
because we could use the form f E:(-) for the k; and get estimates
# :

(6.1) for t < T, and which do not depend on T. In order to simplify
the argument, we ignore the fact that k(-) £ 3. !

We have (use u = u:, W= W M = Sﬁ:)

o ~ Ee ~E
Afku) = -u'Cu - lt(-u'[(tSMe)'P + P(M))u - § [u'p 9433 * W'(i‘g—)'ml-

Following the method of Theorem 4, define k; such that Rckf cancels

all the terms of ﬁek(u), except for the first. Set k:(t) = kf(u:,t)

Pa—

where

€ -K € ~¢ ~g
(6.3) kl(u,t) il OEt“'[(GMt+s)'P + PxSMus ulds

K € Sk el SR
- = [:E {u'P bog” * w'(GMt*s)'Pulds.




Note that, by the change of variable s/c2 S
2 g ¢ y
(6.4) ky(u,t) = b f Eiu'[dM(s+t/€2)'P + PoM(s+t/€2)u ds
0
St f Ei[u'péﬁ(s+t/e2)w + WeM(s+t/€2) 'Pulds.
0
Now,
(6.5) AKS(u,t) = -(last two terms of Afk(u)) + (ks ' (0,103 165,
- ’

The function k;(t) is chosen in a way such that Rekg(t)
cancels the part of the last term of (6.5) which is not O0(€) (to
see which terms are O0O(€) or O(l), change variables s/€2 RS,

Thus set
(6.6) kS(t) = 2k’ fwdﬁ m[EEW'(éﬁe L - S
: /s TZCZ 0 3 0 ot t+s t+s+v t t

where

c, = (2k%/1%) maw'(aﬁ '"P6M_, W, ds

t el o POM,,w ds.
Now,
Ask;(t) = -(dominant part of last term in (6.5) + Ct'

By a change of variables s/€2-s, v/ez-*v and (B2), it can be
verified that k; = 0(62).

Combining the foregoing together with (B1l)-(B2) yields, for
€

k® = k + kf + kg, u = ug,

R®kE(t) = -u'Cu + C, + B (u,w,)E,

k(u) < k“(u,t) + €|B(u,¥,)],

where B_(-) and B (:) are both the sum of quadratic forms in u
and bilinear forms in (u,Wt) and with coefficients that are bounded
uniformly in €,w,t.

By (3.1) and the above estimates, there are positive real C,o
and €, such that for € < ¢,

| ——
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T T,

S R
C dv + EIBE(us,ws)l.

S
(6.7) Ek(u;) < Ekc(ug) < IOLk(us)dv + fo

Since ug =0, (6.7) implies (6.1).

Given (6.1), it is not hard to show, via the method of Section 4
(see also Section 5 of (7)) that (6.2) holds. Also, the limit of any
weakly convergent sequence (as € » 0) must converge to some solution
of (2.5).

We only need to show that as € » 0, T » @, any subsequence
converges to the stationary solution of (2.5). Fix T1 > 0 and take
a convergent subsequence of (uE(T+')} (e » 0, T» =), Take a further
subsequence of the subsequence, such that the [T-Tl,m) sections are
weakly convergent also. Let u(:) and E(-) denote the weak limits
on Drlo,w) of the I[T,~») and [T~T1,w) sections, resp. Then u(‘)
is just the [Tl,w) section of T(-). In particular, u(0) = ;(T1)°
Since (ue(t)} is tight and T1 arbitrary and u = -Kou asymptoti-
cally stable, we get that any limit as T » =, € » 0 must be the
stationary solution of (2.5). Q.E.D.

Remark. Theorem 6 is preferable to Theorem 5, but since €0 depends
on the maximum magnitude of y(:), we do not get a good estimate of
the stability region. Some other approach seems to be needed for
this. We have tried to combine the above ideas with the ideas in
stochastic stability for linear systems with coefficient variations
(such as those based on Gronwall's Lemma ([15]-({17]) but without much

success so far.
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